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Multimode Equivalent Network
Representation for H- and f£/-Plane
Uniform Bends in Rectangular Waveguide

Benito Gimeno and Marco Guglielmi

Abstract— Uniform bends in rectangular waveguides are fre-
quently used components in many microwave subsystems both for
ground and space applications. Their accurate and efficient full-
wave characterization is therefore required for the development
of modern CAD tools to analyze and design complex waveguide
structures. In this paper we describe new multimode network
representations for both HA- and E-plane uniform bends in terms
of impedance and admittance multimode coupling matrices, re-
spectively. The key element of the network is the transition from
the straight waveguide to the curved waveguide. The relevant
multimode equivalent network representation is obtained follow-
ing a simple procedure that has already been used with success
for other types of junctions involving straight waveguides. The
convergency properties of the method are discussed, and compar-
isons between our simulations and theoretical and experimental
data are presented, indicating that the approach proposed is at
the same time accurate and computationally very efficient.

1. INTRODUCTION

NIFORM bends in rectangular waveguides, like the ones

shown in Fig. 1, are frequently used components in many
microwave subsystems both for ground and space applica-
tions. Their accurate and efficient full-wave characterization
is therefore required for the development of modern CAD
tools to analyze and design complex waveguide structures.
Several contributions can be found in the technical literature
concerning bends. Starting with early contributions, Rice [1]
obtains two approximate formulas for the reflection coefficient
of the H- and E-plane bends with large radius of curvature.
Cochran [2] presents results of the propagation constants of
H- and E-plane bends as function of several parameters,
expanding the radial component of the electric and magnetic
fields as a combination of Bessel functions. Bates [3] analyzes
the junction between straight and curved waveguides with a
method based on an integral equation formulation. Lewin [4]
derives approximate modal solutions for H- and F-plane bends
by means of a perturbation analysis. More recently, Carle [5]
presented a single-mode circuit for E-plane bends. Accatino
[6] applied mode-matching technique to analyze H- and E-
plane bends, using an ad-hoc solution of the characteristic
equation (which involves Bessel functions), allowing him to
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bypass the ill-conditioning of the problem for the propagation
constants in the curved region. Weisshaar [7] presented an
accurate method based on mode-matching technique where the
Helmbholtz equation in the curved region is transformed into an
eigenvalue problem. Most of the above publications are based
on mode matching technique (except for [5] where a single-
mode equivalent network is presented) and give scattering
parameter representations.

Recently, modern CAD tools for complex waveguide sys-
tems have been developed which are based on admittance
or impedance multimode network representations (see for
instance [8], [9]). Thus, the objective of this paper is to
describe multimode equivalent network representations for
both H- and E-plane uniform bends in terms of impedance and
admittance multimode coupling matrices, respectively. The
key element of the network is the transition from the straight
waveguide to the curved waveguide regions [10]. The details
of the formulations are given in this paper with comparisons
between our simulations and available published data, both
measured and theoretical. The convergence of the method is
also analyzed, indicating very good behavior as well as very
good computational efficiency.

II. THEORY
A. H-Plane Bend

The viewpoint chosen to simulate the waveguide bend
shown in Fig. 1(a) consists in cascading two discontinuities
through a length S = R¢ of uniformly curved waveguide,
obtaining the multimode equivalent network representation
shown in Fig. 2. The key discontinuities are then the junctions
between straight to curved and curved to straight waveguide
regions. Once the problem has been decomposed in this
fashion, the first step toward the development of the multi-
mode equivalent network representation is the computation
of an orthonormal set of modes for the curved waveguide
region. The procedure chosen to obtain the appropriate modal
decomposition is based on a combination of [4] and [7], and
is outlined below.

We begin with the expansion of the transverse electric and
magnetic fields in the curved region as an infinite series of
modes
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H-PLANE BEND

E-PLANE BEND

Fig. 1. Uniform H- and E-plane bends in rectangular waveguide.

where the superscripts (¢) denotes the curved region. Each
mode of the curved region (eﬁ,i) and hsﬁ)) is then expanded into
an infinite series of standard parallel-plate waveguide basis

functions egf), ne, namely [see Fig. 1(a)]
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with
o) = gsin(%ﬁ(x+g))yo; n=1,23... (5
hgj)z\/gsin(%(x+g))xo; n=1,23... (6)

where the superscript (s) denotes the straight region. The
series (3) and (4) are then inserted in the Helmholtz equation
of the curved region, obtaining a matrix eigenvalue problem
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(see details in Appendix A). The following inner products,
called in the remainder the overlapping integrals, are required
in this procedure
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Finally, the linear matrix eigenvalue problem is solved, and the
propagation constants ﬁ,(,f) and the coefficients of the series
expansion dgm) are obtained numerically. The characteristic
impedances associated with these modes are
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Fig. 2. Multimode equivalent network for H- and E-plane bends. The Z,(,;’,’Tf) (Y,S,'f;f))and 2577,’3) (Y,Sz’rf)) impedance (admittance) matrices represent the
transition from the straight to the curved and the curved to the straight waveguide regions, respectively. The transmission line of length S represents

the propagation in the curved waveguide region.

It is important to note that the following orthonormalization
condition is satisfied automatically, because of a property of
the diagonalization process to obtain the modes of the curved
region

(ef9,e() = (nfe), B = 5 (12)
The vector mode functions of the straight waveguide region
also satisfy an orthonormalization condition, namely

(e &™) = (h) WY = 5 (13)

Once the modes of the curved waveguide region are ob-
tained, the next step is to analyze the junction between the
straight and the curved waveguide regions. This has been done
adapting a simple method that has already been used to analyze
the junction between arbitrary straight waveguides [11]. To
proceed we need to define two reference planes denoted as T
and T, as shown in Fig. 1. The plane T” is at the junction
between the two waveguide regions, while the plane T is
jocated at a distance [ in the straight waveguide. We can then
write the mathematical equivalent of the network representa-
tion between the reference planes 1" and T”, represented as a
multiport in Fig. 2, in the form

400 =
v = 5% 20035 282105 ) -

n=1

(), (s) (4

n=1

where V(‘S) and I, (&) are the modal voltages and currents,

respectively. According to circuit theory, the Z,(n’l) element
is given by the general relation
12%
zZem = ro) IO =0VeEty andk#n.  (15)

This relation can be interpreted as follows: place an open-
circuit in all ports with the exception of the exciting port
{(v) where only the current I s supposed to be incident,

and evaluate the voltage V,®) on the open-circuited port (§).

Expression (15) can be actually used to evaluate the Z,(n n)
elements obtaining the general expression

({757 )
IT(L’Y)

Zi) = (16)

where E(L(ﬂ)) is the electric field excited in the open-circuited
port (8) when only the nth mode is incident in the port (7),
and the inner product is evalvated in the region corresponding
to the port (6).

Starting with Zr(,f,’f;), we put an open-circuit in 7’ obtaining
the equivalent transmission line representation in Fig. 3(a}, so
that we can write directly

Z,(,f;f) = —§Z) cot (ﬂ,(,f)l) -

an

Before proceeding further, we recall that the expression
relating the current to the voltage along an open-circuit trans-
mission line is given by

V(2) = =3 ZolI(2)|.=—i cos(Bz) csc (Bl)

Zy being the characteristic impedance of the line. Following
the general relation (16), then we have [see Fig. 3(a)]

(18)

709 = 70 = j 2 esc(B1) (8,6 (19)

where the inner product is given by
c 1
(o), oY) \f Zd(m)

(e ohes e

The last element to be determined is Z,(,fjfl). The reference
system used to evaluate this element has to be inverted, as it
is shown in Fig. 3(b). Now, we place in T an open-circuit and
suppose that the single mode I,(LC) is incident from the curved
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Fig. 3. Length of open-circuited transmission line to evaluate the elements
( Z of the impedance matrix.

region. Denoting as Hgf)(z)|z:_l the magnetic field in the 7’
plane, we can write

I©n)

R

z=—1

(21)

This magnetic field excites all modes of the cavity defined
between the planes T and 7”7, and the expansion coefficients
of these modes can be obtained as follows:

(#)
1

1) = ( —— 10O n 2
k <1_|__Ia% n ok ( 2)

Now, in order to apply the general relation (16), the tangential
electric field in the straight waveguide cavity in the 7" plane,

denoted as ng)(z) |»=—1, has to be calculated, obtaining
“+o00
EQ ()|, =Y =iz cot(BONITel  (23)
k=1

and finally we obtain the expression for Z,(,fjfb), namely

Z,(,f:fL) = - ZZ(s)cot ,8(8 I){e ;cs),egf»(c)
h( h<5)> 24
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This concludes the derivation of the impedance matrix. What
is important to note, is that the overlapping integrals involved
in the process to obtain the elements of the impedance matrix
are not frequency-dependent, and that only the Z,(,f n) elements
involve a summation.

Once the impedance matrix for the junction between straight
and curved regions has been evaluated, the next step to
simulate a complete bend is to obtain the impedance matrix
corresponding to the transition from the curved to the straight
waveguide regions. The elements of this matrix, denoted as
Zy(,:’, ’S) in Fig. 2, are then easily obtained taking account the
physical symmetry of the structure, so that

Z(%«S) Z(éﬁ) (26)

B. E-Plane Bend

The expansion of the transverse electric and magnetic fields
of the curved region used to analyze F-plane bends is given
by [see Fig. 1(b)]
+oo
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To expand the field in the curved region we have applied the
same procedure that for H-plane bends. Therefore, each mode
of the curved region is expanded as

+oo
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and €, is 1 if n = 0 and 2 if n # 0. The inner products are
defined in the curved and the straight regions as follows:

b/2
(f.9)@ = /_b/2 o %f(y)g(y)dy

b/2
o= [ ey

Note that using these inner products definitions the orthonor-
mality conditions (12) and (13) are satisfied as well. Details of
the procedure are also found in Appendix A. The characteristic
admittances of these modes are given by

(33)
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where ﬂr(,f) again represents the modal propagation constant in
the curved waveguide and is obtained from the solution of the
eigenvalue problem. Following [11] we can now write directly
these expressions for the admittance matrix elements

V&9 = =Y. cot(BD1) 6mim (38)
Y50 = v o0 = j¥ cse(891) (b, b)Y (39)

+oo
Y69 = =3 310 oot (B0 (b2, 19)
k=0

(s)
1 (
<(rgeel)

C. Connection of Bends

(40)

Fig. 2 shows the equivalent network representation to
simulate a complete bend. More complicated structures
can be easily analyzed by connecting several equivalent
network representations through appropriate transmission line
lengths. Basically, there are two structures, called U- and S-
configurations, respectively, which consist on connecting two
bends through a length of straight rectangular waveguide. In
the U-configuration the centers of curvature of the bends are
in the same side, while in the S-configuration the centres of
curvature are in opposite sides of the waveguide (see Fig. 4).

The equivalent network representation used to simulate the
U-configuration is shown in Fig. 4(a). The negative lengths —{
and —2/ in the network are required in order to account for
the length [ as shown in Fig. 1.

In the S-configuration, since the centres of curvature are
in opposite sides of the waveguide, a change of the reference
frame is required [see Fig. 4(b)]. Let us denote with (z,y, s)
and (z/,y,s’) the reference systems associated to the first
and the second bends, respectively. In Fig. 4(b), 2 new “box”
with dashed lines indicates the combined representation of the
length of transmission line L — 2! with the change of reference
frame required. To find the impedance matrix of this new
element, the expression of the electric vector mode function in
the prime system is changed to the nonprime frame, resulting
for the H-plane case in the following expression:

els) = _\/gsin<%;7£(—x + g)) (=Yo)

where we have taken into account that z = ~z/, y = —¢/,
s = §'. In order to find out the relationship between the modal
voltages associated with the modes in both reference systems,
we impose the continuity boundary condition of the transversal
electric field in a plane located in the straight region in between
the bends, obtaining

(41)

+oo +o0 ,
Y Vel =3 Voel) “2)
n=1 m=1
After algebraic manipulations we find
+o00 (s)
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A similar expression is found for the modal currents: I, =
(=1)™I].. The change of the reference system must be included
in the impedance matrix of the straight waveguide connecting
the bends, the elements of this matrix are then given by

Z00) = 232 = =528 cot (B8 (L = 20)) bmom (44)
25 = 2R = =i (-1 Z) esc(B (L = 20)bmn (45)

Similar expressions are obtained for the E-plane case.

Once the impedance (admittance) matrices of all elements of
the structure are evaluated, they are properly connected to form
a global multimode equivalent network. From the network, a
band diagonal system is obtained, which has to be inverted
in order to find the reflection and transmission coefficients
of all modes. Thus, only one matrix inversion is required for
each frequency point. This inversion is performed by means an
adequate inversion algorithm for band diagonal systems [12],
resulting in a very fast code implementation.

III. NUMERICAL AND EXPERIMENTAL RESULTS

We are going to discuss the convergence of the expansions
to describe the modes in the curved waveguide region. Fig. 5
shows the convergence of the propagation constants ,Bﬁ,‘;’) of
the modes in the curved region as a function of the number
of terms used to describe each mode. The summations (3)
and (4) can be truncated to 20 terms to reach the region of
convergency. In Fig. 6, the convergence of the element Zﬁg’cgc)
as a function of the number of expansion terms is analyzed
for different radii of curvature. The radii have been normalized
with respect to the minimum radius possible Ry, = 5. For
small radius of curvature the convergence is slow and a large
number of terms must to be included to achieve convergence,
but for R/Rmin > 1.4 only 20 terms are enough to reach
the region of convergence. Similar results are obtained for the
E-plane case.

In Fig. 7 the convergence of the magnitude of the reflection
coefficient with the number of modes in the global network
is analyzed for both 90° H- and E-plane bends in WR-75
waveguide, showing that typically only 3 or 4 modes are
required. The radius of curvature of the bends is 15 mm.
Although 20 terms are strictly necessary to reach the region
of convergency, we can see that only 10 expansion terms are
enough to obtain an accurate solution in practical applications.

Next we compare our results with the ones presented by
Weisshaar [7] in Fig. 8 for a S-configuration in the H-plane.
As we can see, a very good agreement is observed. Finally,
we present a comparison of the magnitude of the reflection co-
efficient and the phase of the transmission coefficient between
measured results (courtesy of RYMSA) and our simulations in
Fig. 9, for both H- and F-plane bends in WR-75 waveguide.
Also in this case, the agreement is very good, thereby further
validating the multimode equivalent network representation.
The computation time for a typical analysis (with 3 modes
in the network and 10 terms to describe each mode of the
curved region) with 50 points in frequency is 1.6 seconds on
a IBM RISK-6000 workstation. The computational effort is of
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Fig. 4. U-and S- configurations of connected H-plane bends with the associated multimode equivalent network representations. For the S-configuration, the
box with dashed lines combines the representation of the length of straight rectangular waveguide between the bends with the change of the reference

system involved in this configuration.

the same order of magnitude of the ones required for other
waveguide junctions commonly used in complex satellite mi-
crowave subsystems, and therefore the software developed in
this paper can be easily integrated into existing CAD tools [9].

IV. CONCLUSION

A new multimode equivalent network representation for
the analysis of uniform H- and E-plane bends in rectangular
waveguide has been presented. The junction between straight
and curved waveguide regions, which is the key element of

the structure, is analyzed in terms of a multimode equivalent
network representation involving an impedance or admittance
coupling matrix for H- and FE-plane bends, respectively.
The convergence of the network representation has been
analyzed as function of several parameters, showing very
good behavior. Comparison with theoretical and experimental
results fully validate the method presented. The value of the
results presented is that the multimode network developed
can now be easily inserted into existing CAD tools thereby
allowing for the accurate analysis and design of more complex
waveguide subsystems.
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Fig. 5. Convergency of the propagation constant ,32? of the modes in the
curved waveguide region as a function of the number of expansion terms used
to describe each curved region mode (H-plane bend in WR-75 waveguide,
a = 10.050 mm, b = 9.525 mm, radius = 17 mm, frequency = 14 GHz).
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expansion terms used to describe each curved region mode. The radius varies
in order to analyze the convergence of the method as function of the curvature
of the bend (H-planebend in WR-75 waveguide, ¢ = 10.050 mm, b = 9.525
mm, frequency = 14 GHz). )

APPENDIX A
MODAL SOLUTIONS IN THE CURVED WAVEGUIDE REGIONS

A. H-Plane Bends

Following Weisshaar [7], the Helmholtz equation in the
H-plane curved region can be transformed by means of the
Galerkin method into the following equivalent matrix eigen-
value problem

(%)2) P = Sij)dg’”)

,N.

N
5 ((em-
1=1
9 N
=S Qud™; i=12,... (46)

=1
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Fig. 7. Convergency of the magnitude of the reflection coefficient versus the
number of modes included in the network. Ten expansion terms have been
used to describe each curved region mode (90° H-plane and E-plane bends
in WR-75waveguide, ¢ = 10.050 mm, b = 9.525 mm, radius = 15 mm,
frequency = 15 GHz).
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Fig. 8. Comparison of the results presented in Fig. 3(d) of [7] with our
method. Cascaded 30° H-plane bends through a straight transmission line
of length L = 5 mm. Ten expansion terms have been used to describe each
curved region mode and three modes have been included in the network. Both
U- and S-configurations have been analyzed. (WR-90 waveguide, a = 22.900
mm, b = 10.200 mm, radius = 15.24 mm).

It is important to note that this is a linear eigenvalue problem
and can therefore be easily solved with standard mathematical
routines for matrix operations.

If the TEq( rectangular waveguide mode is incident, only
modes with r = 0 are excited in the curved region. The
solution of the problem in (46) requires the computation of
the elements of the matrices Fj;, S;;, and Q;;. The relevant
explicit expressions (not given in [7]) are as follows:

a 1 a?
Pij =58+ (1= bij) 555
(__l)i—j -1 (_1)i+j —1
(i—5)° (i +4)°

X 47



1686
0 T T .
H-plane simulated
H-plane measured °
20 E-plane simulated -
- E-plane measured ~+
,,*:\ ¥
-~ -40 .
= T
@ 60 - S §
80 | : 4
-100 ] ;
10 11 12 13 14 15
Frequency (GHz)
(@)
300 T T T
250 ‘ H-plane simulated
i o © Heplane measiired ¢
200 - ; E-plane simulated -
. ‘E-plane measured + |
ge 100 + : . R~ . -
= 50 ¢ ‘ .
3 .
Q 0+ ©. N : 1
.50 + . I e - . % A
+, o . i
-100 b P R s
_200 ] ) 1 1
10 11 12 13 4 15
Frequency (GHz)
®)

Fig. 9. Comparison between measured and simulation data. Ten expansion
terms have been used to describe each curved region mode, and three modes
have been included in the network. (a) Magnitude of the reflection coefficient,
(b) phase of the transmission coefficient. Radius = 21.6mm and 12 mm for
the H- and E-plane bends, respectively. (90° H- and E-plane bends in WR-75
waveguide, ¢ = 10.050. mm, b = 9.525 mm).

(m\2[a 1 a@?
S5 =4(3) |30+~ 0)pgp
—1)9 —1 —1)+ 1
(G 2L EDP 2 )
(i—-J) (i +4)
te/2 B 7,71' a
Qij=/_a/2 x-l—Rsm(;(x_!_ 5))
. (T a
xsm(;(w-{- 2))dm 49)

where the notation of [7] has been used. From a computational
point of view, we remark that these coefficients are evaluated
only once, and stored in an array. Therefore, the matrix
eigenvalue system (46) has to be solved for each frequency
point varying only w.
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B. E-Plane Bends

The matrix eigenvalue system for the modes of the E-plane
curved region is

5 (st ()5

=1

N
2 ¢ m .
=By Qud(™; j=12...,N. (0

t==1

Being the fundamental rectangular waveguide mode incident,
only modes with r» = 1 are excited in the curved region. The
matrix elements P;;, S;;, and Q;; are given by '

b 1 b2
Pij = —bi + (1=bi) 553

(- -1
(i+35)

(-1 -1

— (51
(i-35)° )

X

/N2 b 1 b2
Sij = ZJ(—) Gt (1-8i) 55
(_1)i—j -1 B (_1)i+j -1
(i - 4)* (i +4)*

X (52)

+b/2 R
Qi; =/ 7T R
b2 YT LI

j b ] b
X cos(% (y + 5))003(% (y + §)>dy. (53)
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