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Multimode Equivalent Network

Representation for H- and E-Plane

Uniform Bends in Rectangular Waveguide
Benito Gimeno and Marco Guglielmi

Abstract— Uniform bends in rectangular waveguides are fre-
quently used components in many microwave subsystems both for

ground and space applications. Their accurate and efficient full-

wave characterization is therefore required for the development
of modern CAD tools to analyze and design complex waveguide
structures. In this paper we describe new multimode network
representations for both H- and E-plane uniform bends in terms
of impedance and admittance multimode coupling matrices, re-

spectively. The key element of the network is the transition from

the straight wavegnide to the curved waveguide. The relevant

multimode equivalent network representation is obtained follow-

ing a simple procedure that has already been used with success

for other types of junctions involving straight waveguides. The

convergency properties of the method are dkcussed, and compar-
isons between our simulations and theoretical and experimental

data are presented, indicating that the approach proposed is at
the same time accurate and computationally very efficient.

I. INTRODUCTION

uNIFORM bends in rectangular waveguides, like the ones

shown in Fig. 1, are frequently used components in many

microwave subsystems both for ground and space applica-

tions. Their accurate and efficient full-wave characterization

is therefore required for the development of modern CAD

tools to analyze and design complex waveguide structures.

Several contributions can be found in the technical literature

concerning bends. Starting with early contributions, Rice [1]

obtains two approximate formulas for the reflection coefficient

of the H- and E-plane bends with large radius of curvature.

Cochran [2] presents results of the propagation constants of

W and E-plane bends as function of several parameters,

expanding the radial component of the electric and magnetic

fields as a combination of Bessel functions. Bates [3] analyzes

the junction between straight and curved waveguides with a

method based on an integral equation formulation. Lewin [4]

derives approximate modal solutions for H- and E-plane bends

by means of a perturbation analysis. More recently, Carle [5]
presented a single-mode circuit for E-plane bends. Accatino

[6] applied mode-matching technique to analyze ~- and E-

plane bends, using an ad-hoc solution of the characteristic

equation (which involves Bessel functions), allowing him to
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bypass the ill-conditioning of the problem for the propagation

constants in the curved region. Weisshaar [7] presented an

accurate method based on mode-matching technique where the

Helmholtz equation in the curved region is transformed into an

eigenvalue problem. Most of the above publications are based

on mode matching technique (except for [5] where a sin@e-

mode equivalent network is presented) and give scattering

parameter representations.

Recently, modern CAD tools for complex waveguide sys-

tems have been developed which are based on admittance

or impedance multimode network representations (see for

instance [8], [9]). Thus, the objective of this paper is to

describe multimode equivalent network representations for

both H- and E-plane uniform bends in terms of impedance and
admittance multimode coupling matrices, respectively. ‘Irhe
key element of the network is the transition from the straight
waveguide, to the curved waveguide regions [10]. The details

of the formulations are given in this paper with comparisons

between our simulations and available published data, both

measured and theoretical. The convergence of the method is

also analyzed, indicating very good behavior as well as very

good computational efficiency.

II. THEORY

A. H-Plane Bend

The viewpoint chosen to simulate the waveguide bend

shown in Fig. 1(a) consists in cascading two discontinuities
through a length S = R~ of uniformly curved waveguide,

obtaining the multimode equivalent network representation

shown in Fig. 2. The key discontinuities are then the junctions

between straight to curved and curved to straight waveguide

regions. Once the problem has been decomposed in this

fashion, the first step toward the development of the multi-

mode equivalent network representation is the computation
of’ an orthonormal set of modes for the curved waveguide
region. The procedure chosen to obtain the appropriate modal

decomposition is based on a combination of [4] and [7], and
is outlined below.

We begin with the expansion of the transverse electric and

magnetic fields in the curved region as an infinite series of

modes

(1)

(2)
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where the superscripts (c) denotes the curved region. Eacl

mode of the curved region (e&) and h~) ) is then expanded intc

an infinite series of standard parallel-plate waveguide basis

functions e$), h$), namely [see Fig. l(a)]

(3;

with

e$)=-fisin(~(x+f))yo;rz=l,2,3... (5]

h$)=~sin(~(z+~))x.; n= I,2,3... (6)

where the superscript (s) denotes the straight region. The

series (3) and (4) are then inserted in the Helmholtz equation

of the curved region, obtaining a matrix eigenvalue problem

1

)

a

(see details in Appendix A). The following inner products,

called in the remainder the overlapping integrals, are required

in this procedure

pa12

1(f,d(s)= cf($)d~)d~ (8)
—af2

Finally, the linear matrix eigenvalue problem is solved, and the

propagation constants ,d$) and the coefficients of the series
(m)

expansion dn are obtained numerically. The characteristic

impedances associated with these modes are
I

(9)

Oy=+,voeo-(:)2 (lo)

Zfc) _ ~Po .

p:)
(11)
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Fig. 2. Multimode equivalent network for H- and E-plane bends. The Z~,$? (Y~k? )and 29,’:) (?~t) ) impedance (admittance) matrices represerrl the

transition from the straight to the curved and the curved to the straight waveguide regions, respectively. The transmission, line of length S represents
the propagation in the curved waveguide region.

It is important to note that the following orthonormalization

condition is satisfied automatically, because of a property of

the diagonalization process to obtain the modes of the curved

region

(et), e$))(c)= (h~), h:))(c) = &m,n. (12)

The vector mode functions of the straight waveguide region

also satisfy an orthonormalization condition, namely

(E&)>e~))(s)= (J@ h(s))(s)=~m>n m,n. (13)

Once the modes of the curved waveguide region are ob-

tained, the next step is to analyze the junction between the

straight and the curved waveguide regions. This has been done

adapting a simple method that has already been used to analyze

the junction between arbitrary straight waveguides [11]. To

proceed we need to define two reference planes denoted as T

and T’, as shown in Fig. 1. The plane T’ is at the junction

between the two waveguide regions, while the plane T is

located at a distance 1 in the straight waveguide. We can then

write the mathematical equivalent of the network representa-

tion between the reference planes T and T’, represented as a

multiport in Fig. 2, in the form

where Vi? and L!? are the modal voltages and currents,

‘8’7) elementrespectively. According to circuit theory, the Z~,~

is given by the general relation

This relation can be interpreted as follows: place an open-

circuit in all ports with the exception of the exciting port

(-y) where only the current L!?) is supposed to be incident,

and evaluate the voltage V# on the open-circuited port (6).

Expression (15) can be actually used to evaluate the z$rf~~)

elements obtaining the general expression

(16)

where E(19) ) is the electric field excited in the open-circuited

port (8) when only the nth mode is incident in the port (T),

and the inner product is evaluated in the region corresponding

to the port (6).

Starting with Z~$), we put an open-circuit in T’ obtaining

the equivalent transmission line representation in Fig. 3(a), so

that we can write directly

Z(V) = –jz$$ cot(/3&)l)&n.
m,n (17)

Before proceeding further, we recall that the expression

relating the current to the voltage along an open-circuit trans-

mission line is given by

V(2)= –jzd(z) I.=_lCos(pz) Csc (@l) (18)

20 being the characteristic impedance of the line. Following

the general relation (16), then we have [see Fig. 3(a)]

z(s,c) – Z(W) = j,zf) CSC(~f)/)(ef), e$))(’)
~>n — n,~

(19)

where the inner product is given by

=in(%x+;))sin(%+%“x
(20)

‘“c) The referenceThe last element to be determined is Z~,n .

system used to evaluate this element has to be inverted, as it
is shown in Fig. 3(b). Now, we place in T an open-circuit and

(c) .
suppose that the single mode 1~ 1s incident from the curved
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Fig. 3. Length of open-circuited transmission line to evaluate the elements

Z~’~) of the impedance matrix.

region. Denoting as H~) (z) 1,=_z the magnetic field in the T’

plane, we can write

(21)

This magnetic field excites all modes of the cavity defined

between the planes T and T’, and the expansion coefficients

of these modes can be obtained as follows:

(22)

Now, in order to apply the general relation (16), the tangential

electric field in the straight waveguide cavity in the T’ plane,

denoted as E$) (z) l.=-l, has to be calculated, obtaining

Et) (z) lz=_l = ~m–jZ$) cot (~~)l)l$)e$)
/$=1

and finally we obtain the expression for Z$$), namely

Z(V) = _j
E

(s) (c) (c)
)

‘m Z$)cot (~$)1) (e~ , ‘m
m,n

k=l

( )

(s)

1 h$) , @

1+;

where the second inner product is given by

(

(s)
1 h~) , h:)

1+; )

=-gEdP)~:;2&

“in(+(x+:))’in(:( x+:))dx

(23)

(24)

(25)

This concludes the derivation of the impedance matrix. What

is important to note, is that the overlapping integrals involved

in the process to obtain the elements of the impedance matrix

are not frequency-dependent, and that only the Zk$) elements

involve a summation.

Once the impedance matrix for the junction between straight

and curved regions has been evaluated, the next step to

simulate a complete bend is to obtain the impedance matrix

corresponding to the transition from the curved to the straight

waveguide regions. The elements of this matrix, denoted as

2$$ in Fig. 2, are then easily obtained taking account the

phy’sical symmetry of the structure, so that

j(g) = Z(J>;) , (26)

B. E-Plane Bend

The expansion of the transverse electric and magnetic fields

of the curved region used to analyze E-plane bends is given

by [see Fig. l(b)]

(27)

(28)
m=l

To expand the field in the curved region we have applied the

same procedure that for H-plane bends. Therefore, each mode

of the curved region is expanded as

n=(l

where

(29)

(30)

‘f)=-ficos(%+w’‘=012 ’31)
‘:)=ficos(~(x+:))xo;~=o,l,,... (32)

and em is 1 if n = O and 2 if n # O. The inner products are

defined in the curved and the straight regions as follows:

/
(f, d(c)= ::;2#@MWv

/b/2

Note that using these inner products definitions the

(33)

(34)

orthonor-
mality conditions (12) and (13) are satisfied as well. Details of

the procedure are also found in Appendix A. The characteristic

admittances of these modes are given by

y(c) = ‘2~oE0 – (;)2
m

wpop!?
(37)
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where flk) again represents the modal propagation constant in

the curved waveguide and is obtained from the solution of the

eigenvalue problem. Following [11] we can now write directly

these expressions for the admittance matrix elements

y(w) = –jY:) cot(@f#l)6m,n

y;::) = Y(cs) = jyf) csc(~f)i) (h~), h~))(c)
m,n n,m

y(w) =
m,n

–j ~ yf) cot (f@) (h$), h:))(’)

k=O

(

1

)

(s)

x l+%
& , & .

(38)

(39)

(40)

C. Connection of Bends

Fig. 2 shows the equivalent network representation to

simulate a complete bend. More complicated structures

can be easily analyzed by connecting several equivalent

network representations through appropriate transmission line

lengths. Basically, there are two structures, called U- and S-

configurations, respectively, which consist on connecting two

bends through a length of straight rectangular waveguide. In

the U-configuration the centers of curvature of the bends are

in the same side, while in the S-configuration the centres of

curvature are in opposite sides of the waveguide (see Fig. 4).

The equivalent network representation used to simulate the

U-configuration is shown in Fig. 4(a). The negative lengths –1

and – 21 in the network are required in order to account for

the length 1 as shown in Fig. 1.

In the S-configuration, since the centres of curvature are

in opposite sides of the waveguide, a change of the reference

frame is required [see Fig. 4(b)]. Let us denote with (z, y,s)

and (x’, y’, s’) the reference systems associated to the first

and the second bends, respectively. In Fig. 4(b), a new “box”

with dashed lines indicates the combined representation of the

length of transmission line L – 21 with the change of reference

frame required. To find the impedance matrix of this new

element, the expression of the electric vector mode function in

the prime system is changed to the nonprime frame, resulting

for the H-plane case in the following expression:

where we have taken into account that x = –x’, y = – y’,
s = ,s’. In order to find out the relationship between the modal

voltages associated with the modes in both reference systems,

we impose the continuity boundary condition of the transversal

electric field in a plane located in the straight region in between

the bends, obtaining

~vnek)=~v ,(s)’mm, (42)
n=l Tn=l

After algebraic manipulations we find

(
(s)

V. = ~ V~e~)’, ef)

)

= (-l)nv;. (43)
m=l

A similar expression is found for the modal currents: In =

(-l)nl~. The change of the reference system must be included

in the impedance matrix of the straight waveguide connecting

the bends, the elements of this matrix are then given by

Similar expressions are obtained for the E-plane case.

Once the impedance (admittance) matrices of all elements of

the structure are evaluated, they are properly connected to form

a global multimode equivalent network. From the networlk, a

band diagonal system is obtained, which has to be inverted

in order to find the reflection and transmission coefficients

of all modes. Thus, only one matrix inversion is required for

each frequency point. This inversion is performed by means an

adequate inversion algorithm for band diagonal systems [1.2],

resulting in a very fast code implementation.

III. NUMERICAL AND EXPERIMENTAL RESULTS

We are going to discuss the convergence of the expansions

to describe the modes in the curved waveguide region. Fig. 5

shows the convergence of the propagation constants ,0$) of

the modes in the curved region as a function of the number

of terms used to describe each mode. The summations (3)

and (4) can be truncated to 20 terms to reach the region of

convergency. In Fig. 6, the convergence of the element 2$;’)

as a function of the number of expansion terms is analyzed

for different radii of curvature. The radii have been normalized

with respect to the minimum radius possible ll~in = ~. For

small radius of curvature the convergence is slow and a large

number of terms must to be included to achieve convergence,

but for R/Rrni. > 1.4 only 20 terms are enough to reach

the region of convergence. Similar results are obtained for the

E-plane case.

In Fig. 7 the convergence of the magnitude of the reflection

coefficient with the number of modes in the global network

is analyzed for both 90° H- and E-plane bends in WR-75

waveguide, showing that typically only 3 or 4 modes are

required. The radius of curvature of the bends is 15 mm.

Although 20 terms are strictly necessary to reach the region

of convergency, we can see that only 10 expansion terms are

enough to obtain an accurate solution in practical applications.

Next we compare our results with the ones presented by

Weisshaar [7] in Fig. 8 for a S-configuration in the H-plane.

As we can see, a very good agreement is observed. Finally,

we present a comparison of the magnitude of the reflection co-

efficient and the phase of the transmission coefficient between

measured results (courtesy of RYMSA) and our simulations in

Fig. 9, for both H- and E-plane bends in WR-75 waveguide.

Also in this case, the agreement is very good, thereby further

validating the multimode equivalent network representation.

The computation time for a typical analysis (with 3 modes

in the network and 10 terms to describe each mode of the

curved region) with 50 points in frequency is 1.6 seconds on

a IBM RISK-6000 workstation. The computational effort is of
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Fig. 4. U-and S- configurations of connected H-plane bends with the associated multimode equivalent network representations. For the S-configuration, the
box with dashed lines combines the representation of the length of straight rectangular waveguide between the bends with the change of the reference

system involved in this configuration.

the same order of magnitude of the ones required for other

waveguide junctions commonly used in complex satellite mi-

crowave subsystems, and therefore the software developed in

this paper can be easily integrated into existing CAD tools [9].

IV. CONCLUSION

A new multimode equivalent network representation for

the analysis of uniform H- and E-plane bends in rectangular

waveguide has been presented. The junction between straight

and curved waveguide regions, which is the key element of

the structure, is analyzed in terms of a multimode equivalent

network representation involving an impedance or admittance

coupling matrix for H- and E-plane bends, respectively.

The convergence of the network representation has been

analyzed as function of several parameters, showing very

good behavior. Comparison with theoretical and experimental

results fully validate the method presented. The value of the

results presented is that the multimode network developed

cart now be easily inserted into existing CAD tools thereby

allowing for the accurate analysis and design of more complex

waveguide subsystems.
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Fig. 5. Convergency of the propagation constant /3~) of the modes in the

cnrved wavegnide region as a function of the number of expansion terms used
to describe each curved region mode (H-plane bend in WR-75 waveguide,
a = 10.050 mm, b = 9.525 mm, radius = 17 mm, frequency = 14 GHz).
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Fig. 6. Convergency of the element 23,3 as function of the number of

expansion terms used to describe each curved region mode. The radius varies

in order to analyze the convergence of the method as function of the curvature

of the bend (IZplanebend in WR-75 waveguide, a = 10.050 mm, b = 9.525
mm, frequency = 14 GHz).

APPENDIX A

MODAL SOLUTIONS IN THE CURVED WAVEGUIDE REGIONS

A. H-Plane Bends

Following Weisshaar [7], the Helmholtz equation in the

H-plane curved region can be transformed by means of the

Galerkin method into the following equivalent matrix eigen-

value problem

5 ((u’PC- (y)2)Pi,-saj)dP
i=l

= Pi?z: Qd:m) ; j=l,2,. ... N. (46)

‘inl

.-
1234567 8910

Number of modes in the network

Fig. 7. Convergency of the magnitude of the reflection coefficient versus the

number of modes included in the network. Ten expansion terms have been

used to describe each curved region mode (90° H-plane and E-plane bends
in WR-75wavemride, a = 10.050 mm, b = 9.525 mm, radius = 15 mm,

frequency = 1: GHz).

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
Frequency (GHz)

Fig. 8. Comparison of the results presented in Fig. 3(d) of [7] with our

method. Cascaded 30° H-plane bends through a straight transmission line

of length L = 5 mm. Ten expansion terms have been used to describe each

curved region mode and three modes have been included in the network. Both

U- and S-configurations have been analyzed. (WR-90 waveguide, a = 22.900
mm, b = 10.200 mm, radius = 15.24 mm).

It is important to note that this is a linear eigenvalue problem

and can therefore be easily solved with standard mathematical

routines for matrix operations.
If the TEIO rectangular waveguide mode is incident, only

modes with r = O are excited in the curved region. The

solution of the problem in (46) requires the computation of

the elements of the matrices Pij, Sij, and Qij. The relevant

explicit expressions (not given in [7]) are as follows:

(~(-1) ’-~ -1 (-1)’+~ _ ~

(i -j)’ - (i +j)’ )

(47)
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Fig.9. Comparison between measured and simulation data. Ten expansion
terms have been used todescribe each curved region mode, andtbree modes
have been included in the network. (a) Magnitude of the reflection coefficient,

(b)phase of thetransmission coefficient. Rdus=2l.6mmmd 12mm for
the17-and 23-plane bends, respectively .(90° l%andlLplane bends in WR-75
waveguide, a = 10.050 mm, b = 9.525 mm).

()(~2a

!.$.j. j=’ij ~
1 a2

~tiij + (1 – &J~j-J

(

~ (-lp -1 + (-1)~+~ -1

(2 - j)z (z+j)2 ))

(48)

where the notation of [7] has been used. From a computational

point of view, we remark that these coefficients are evaluated

only once, and stored in an array. Therefore, the matrix

eigenvahte system (46) has to be solved for each frequency

point varying only w.

B. E-Plane Bends

The matrix eigenvahte system for the modes of the E-plane

curved region is

~ ((W2W-(f)2)pij‘Sij)d~m)
i=l

= @#2{:Qijd[m); j=l,2,. ... N. (50)
i,=l

Being the fundamental rectangular waveguide mode incident,

only modes with r = 1 are excited in the curved region. The

matrix elements P~j, Sij, and Q;j are given by

P~.j = ~6ij + (1 – 6~j)~~

(

x (-1) ’-~ -1 + (-1)’+~ -1—
(2 - j)z (i+ j)’ )

(51)

Sij = ~.j(f)2(~6ij+(1 - “ij)~~

(x (-l)i-~ – 1 (–-l)i+~ _ 1

(i - j)z - (2+ j)2
))

(52)

1
fb/2 R

Q,j . _

–b/2 Y + fi~

..os(;(v+;)).os($ (Y+;))dY- (,3)
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